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ABSTRACT

Classical sequential ranking-and-selection (R&S) procedures require all pairwise comparisons after collecting
one additional observation from each surviving system, which is typically an O(k2) operation where k is
the number of systems. When the number of systems is large (e.g., millions), these comparisons can be
very costly and may significantly slow down the R&S procedures. In this paper we revise KN procedure
slightly and show that one may reduce the computational complexity of all pairwise comparisons to an
O(k) operation, thus significantly reducing the computational burden. Numerical experiments show that
the computational time reduces by orders of magnitude even for moderate numbers of systems.

1 INTRODUCTION

Using simulation experiments to select the best system with the largest mean performance from a finite set of
alternatives is known ranking-and-selection (R&S) problems in the simulation literature. Many procedures
have been designed to solve this type of problems, which in general can be classified in two approaches:
the Bayesian approach and the frequentist approach. Interested readers may refer to Chick (2006) and Kim
and Nelson (2006b) for a comprehensive introduction to both Bayesian and frequentist procedures.

Many R&S procedures are developed to handle small-scale problems where the number of systems
is typically less than 1,000. For instance, the well-known KN and KN++ procedures in Kim and Nelson
(2001) and Kim and Nelson (2006a), hereinafter called KN family procedures, are used to solve less
than 500 systems in their papers. As pointed by Luo et al. (2015), this limitation is mainly due to the
limited simulation power as implemented in a single-processor computing environment. As various parallel
computing environments are ready for simulation experiments, it turns out that KN family procedures are
capable of handling large-scale R&S problems with up to 107 systems as in Ni et al. (2015). Simulation
studies in both Luo et al. (2015) and Ni et al. (2015) reveal that the pairwise comparison work in KN
family procedures become a bottleneck when the number of systems is large and simulating one observation
from each system is relatively fast. Taking the Master/Slave parallel framework in Luo et al. (2015) as
an example, because all pairwise comparisons are done on the master, it is highly likely that observations
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generated by the slaves are queued in front of the master waiting for comparison operations while many
slaves are idling for the master to assign the next simulation task.

The time for pairwise comparisons did not get much attention when fully sequential procedures were
implemented in a single-processor computing environment. Most of these procedures care more on their
effectiveness and efficiency, i.e., trying to make the right selection decision with fewer total number of
samples while achieving the targeted probability of correct selection (PCS) criteria. This is reasonable
since they often deal with small-scale problems and the simulation time of obtaining one observation is
relatively longer than the computing time of performing a comparison. In Section 2, we will derive the
computational complexity to see the detailed explanation.

In order to deal with the inefficiency caused by all pairwise comparisons, Ni et al. (2015) proposed
an divide-and-conquer approach in which they divide the all surviving systems into m subsets, where m is
the number of slaves (called workers in their paper), and make pairwise comparisons within each subset
and conduct additional comparisons among the current best systems in each subset. To further improve the
efficiency by reducing the communications between the master and slaves, they allow each slave to simulates
a batch of samples from each system. Of course, they need to run a preliminary stage to estimate the
simulation completion time of generating one observation from different systems to balance the workload
on each slave. The divide-and-conquer approach using the Master/Slave structure is straightforward and
easily implemented to solve large-scale R&S problems in a parallel computing environment, especially
for independent systems without considering the use of common random numbers (CRN). This divide-
and-conquer approach has also been investigated in Ni, Hunter, and Henderson (2013). However, different
from their approach, in this paper, we propose another type of approach to re-investigating the pairwise
comparison formula of the KN family procedures and to breaking the formula by introducing two ordering
sequences. In fact, fully sequential procedures designed on this approach can not only be implemented in
a parallel computing environment, but also be suitable for a single-processor environment.

The rest of this paper is organized as follows. In Section 2, we show the computational complexity of
sampling and comparisons for KN procedure we demonstrate how to reduce the complexity of comparisons
by reforming the screening formula. This allows us to design, in Section 3, a modified KN procedure that
provides a higher PCS than the corresponding original procedure.. Section 4 presents some preliminary
numerical results, followed by conclusion and future research in Section 5.

2 THE COMPUTATIONAL COMPLEXITY OF KN PROCEDURE

The KN family procedures belongs to fully sequential procedures in the indifference-zone framework which
can be traced back at least to Bechhofer (1954) and Paulson (1964). Here we use KN procedure to illustrate
our key points. It is worthwhile pointing out that KN procedure can be viewed as a generalization of
Paulson’s procedure in Paulson (1964) for the unknown and unequal variance case and KN procedure tends
to be more efficient since it is incorporated with a tight bound given by Fabian (1974) rather than the large
deviation results in Paulson’s procedure.

We first introduce necessary notations. Suppose that there are k independent systems. Let Xi` denote
the `th output from system i, which follows a normal distribution with unknown mean µi = E[Xi`] and
unknown variance σ2

i = Var[Xi`]. We assume that Xi` are independent and identically distributed (i.i.d.) for
`= 1,2, . . ., and Xi` and X jn are independent for i 6= j. We consider that there is only one truly best system
under the indifference-zone formulation. Without loss of generality, we let µ1−δ ≥ µ2 ≥ . . .≥ µk where
δ > 0 is the indifference-zone parameter. Our goal is to select system 1 as the best with a PCS, 1−α .

The KN procedure requires first-stage samples to estimate the unknown variances. In order to take the
benefit of using CRN, KN procedure compute the pairwise sample variance between systems i and j,

S2
i j =

1
n0−1

n0

∑
`=1

(
Xi`−X j`− [X̄i(n0)− X̄ j(n0)]

)2
,

where n0 ≥ 2 is the first-stage sample size.
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At stage r≥ n0, KN procedure will eliminate system j from I, where I is the set containing all surviving
systems in contention, if

X̄ j(r)< X̄i(r)−max

{
0,

h2S2
i j

2δ r
− δ

2

}
, for some i ∈ I, i 6= j, (1)

where h2 = (n0−1)
[( 2α

k−1

)−2/(n0−1)−1
]
. Then, the maximum expected number of samples to make the

elimination decision on system j in the worst-case scenario is Nmax =
h2S2

i j
δ 2 . When the first-stage sample

size n0 is relatively large, then by taking the Taylor’s expansion on the term
( 2α

k−1

)−2/(n0−1), which means
the computational complexity of sampling one system is approximately O(logk).

Investigating elimination formula in Equation (1), we have several important findings. First, the use of
CRN helps to shrink the triangular region (thus reducing the total sample size) in KN procedure because
E[S2

i j] = σ2
i j < σ2

i +σ2
j , when Cov[Xi,X j]> 0. However, it does not improve the worst-case sample size of

each system, which is still O(logk) when n0 is large.
Second, for each stage of the KN procedure (after the first stage), an observation is collected for

each surviving alternative, which represents a worst-case computational complexity of O(k). However, the
pairwise comparisons among k systems require a total of k(k−1)/2 comparisons, which has a worst-case
computational complexity of O(k2). Therefore, from the view of computational complexity of the KN
procedure as k→ ∞, it is clear that the part of pairwise comparisons dominates the part of sampling, and
the total worst-case computational complexity of the KN procedure is O(k2 logk).

Even the computational complexity of pairwise comparison is higher than that of sampling, the
computational cost of comparison has not been viewed as a critical problem in traditional R&S literature,
which is often assumed to be negligible compared with the computational cost of simulating observations.
One of the reasons is that the number of systems is typically quite small and simulation time of generating
one observation often takes orders of magnitude longer than the time of comparison operations required.
Until recently using parallel computing environments to handle large-scale R&S problems, this turns out
to be a very critical issue, as discussed in Luo et al. (2015) and Ni et al. (2015). Suppose there are tens
of thousands systems that will be solved in a parallel simulation environment with hundreds of processors
in the Master/Slave structure, a small amount of comparison time in each round on the master could lead
to a large total amount of idling time for all slaves waiting for next simulation job. As mentioned in both
Luo et al. (2015) and Ni et al. (2015), this kind of waste could dramatically reduce the benefits from a
parallel implementation.

In Ni et al. (2015), they proposed a divide-and-conquer method to handle this issue. In this paper, we
take a different approach to dealing with this problem. It is worthwhile pointing out that our approach can
improve the efficiency of the original KN procedure even implemented on a single-processor.

3 THE MODIFIED KN PROCEDURE

Before introducing the modified KN procedure, we first revisit the screening formula in Equation (1).
Without considering CRN, we have σ2

i j = σ2
i +σ2

j . Therefore, it motivates us to replace S2
i j in Equation (1)

of the KN procedure by S2
i +S2

j , where S2
i and S2

j denote the sample variances of systems i and j calculated
using the first stage sample with a sample size of n0. For i ∈ I, define

W+
i (r) = X̄i(r)+

h2S2
i

2δ r
,

W−i (r) = X̄i(r)−
h2S2

i

2δ r
.
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Let i?− = argmax
i∈I

W−i (r) at stage r. Then, it is clear that system j will be eliminated before reaching the

maximum point of the triangular region if and only if

W+
j (r)<W−i?− (r)+

δ

2
. (2)

By doing so, we only compare all surviving systems with the current “best” i?− instead of all pairwise
comparisons between any two surviving systems. Notice that, after collecting all stage r samples, update i?−
is an O(k) operation and use i?− to compare to all other alternatives is again an O(k) operation. Therefore,
we reduce the computational complexity of all pairwise comparisons from O(k2) to O(k), and reduce the
overall computational complexity of the KN procedure of O(k2 logk) to O(k logk). Notice that this cannot
be further reduced under the KN framework, because it is also the order of the total sample size as k→∞.

Because the new procedure does not allow the use of CRN, we call it independent KN procedure and
iKN procedure in short. The following is the more detailed procedure.

Procedure 1 (The iKN Procedure)

Step 0. Setup: Select confidence level 1−α , indifference zone δ and first-stage sample size n0 ≥ 2.
Let

h2 = (n0−1)

[(
2α

k−1

)−2/(n0−1)

−1

]
. (3)

Step 1. Initialization: Let I = {1,2, . . . ,k} be the set of alternatives still in contention. Obtain n0
observations Xi`, `= 1,2, . . . ,n0, from system i, i = 1,2, . . . ,k. Compute that

S2
i =

1
n0−1

n0

∑
`=1

(Xi`− X̄i(n0))
2
,

where X̄i(n0) is the first-stage sample mean of system i with n0 observations. Let

Ni =
h2S2

i

δ 2 ,

If n0 > max
i 6= j

(Ni+N j), then stop and select the system with the largest X̄i(n0) as the best. Otherwise,

set the observation counter r = n0 and go to Step 2.
Step 2. Pre-screening: Let

W+
i (r) = X̄i(r)+

Niδ

2r
, and W−i (r) = X̄i(r)−

Niδ

2r
and

i?− = argmax
i∈I

W−i (r).

Step 3. Screening: Let Iold = I. For any j ∈ Iold, j 6= i?−, if r ≤ N j +Ni?− , then set

Id1 =

{
j ∈ Iold : W+

j (r)<W−i?− (r)+
δ

2

}
, (4)

else if r > N j +Ni?− , then set

Id2 =

{
i ∈ Iold : i = argmin

j,i?−

(
X̄ j(r), X̄i?−(r)

)}
. (5)

Update the contention set I = Iold \ (Id1 ∪ Id2), and go to Step 4.
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Step 4. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best.
Otherwise, take one additional observation Xi,r+1 from each system i ∈ I and update

X̄i(r) =
rX̄i(r)+Xi,r+1

r+1
,

and set r = r+1. If r > max
i6= j

(Ni +N j), then stop and select the system with the largest X̄i(r) as the

best. Otherwise, go to Step 2.

Remark 1 System i?− serves as a current “best” system at each stage after introducing the new screening
formula in Equation (2). It is usually used to eliminate other inferior systems as shown in Formula (4).
However, it does not mean that it will never be eliminated by other systems, as shown in Formula (5).
In fact, Formula (5) mean the discrete process

{
X̄ j(r)− X̄i?−(r),r = n0,n0 +1, . . .

}
has already exited the

triangular region after passing the maximum point. In that case, we cannot use Formula (4) anymore, but
simply compare sample mean values between X̄ j(r) and X̄i?−(r).
Remark 2 The trick can be applied to KN++ procedure with variance updating in a similar fashion by
defining

W+
i (r) = X̄i(r)+

h2S2
i (r)

2δ r
, and W−i (r) = X̄i(r)−

h2S2
i (r)

2δ r
,

where S2
i (r) =

1
r−1 ∑

r
`=1 (Xi`− X̄i(r)])

2.
Remark 3 The statistical validity of iKN procedure can be shown use the same way as for the original KN
procedure. However, since we break the sample variance of difference between two systems into the sum
of two individual sample variances, the PCS actually become a little bit higher than that in KN procedure.
To see why, we recall that Equation (5) in Kim and Nelson (2001) with c = 1 as follows,

E
[

1
2

exp
{
−h2

2(n0−1)
·
(n0−1)S2

ik

σ2
ik

}]
=

α

k−1
. (6)

Since that (n0−1)S2
ik

σ2
ik

is a chi-squared random variable χ2 with (n0−1) degrees of freedom and E[exp{tχ2}] =
(1−2t)−(n0−1)/2, we can solve h2 as in Equation (3). In iKN procedure, we need to show that

E
[

exp
{
−h2

2(n0−1)
·
(n0−1)(S2

i +S2
k)

(σ2
i +σ2

k )

}]
≥ 2α

k−1
.

Notice that

E
[

exp
{
−h2

2(n0−1)
σ2

i

σ2
i +σ2

k
· (n0−1)S2

i

σ2
i

+
−h2

2(n0−1)
σ2

k

σ2
i +σ2

k
·
(n0−1)S2

k

σ2
k

}]
= E

[
exp
{
−h2

2(n0−1)
w · (n0−1)S2

i

σ2
i

}]
×E

[
exp
{
−h2

2(n0−1)
(1−w) ·

(n0−1)S2
k

σ2
k

}]
,

(
w :=

σ2
i

σ2
i +σ2

k

)
=

(
1+

h2

(n0−1)
w
)−(n0−1)/2(

1+
h2

(n0−1)
(1−w)

)−(n0−1)/2

=

(
1+

h2

(n0−1)
+

h4

(n0−1)2 w(1−w)
)−(n0−1)/2

≥
(

1+
h2

(n0−1)

)−(n0−1)/2

=
2α

k−1
.

Therefore, Procedure iKN is statistical valid. Indeed, its PCS is higher than that of the KN procedure.
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4 PRELIMINARY NUMERICAL STUDIES

In the numerical experiments, we set the PCS 1−α = 0.95, the indifference-zone parameter δ = 0.01 and
the first-stage sample size n0 = 100. We assume that all outputs from system i are i.i.d. with a normal
distribution with mean µi and variance σ2

i . The simulation output is simply taken by generating a normal
random variable, which takes a magnitude of milliseconds in Java. The numerical experiment is conducted
on a PC computer with Intel Core i7-3770 CPU and 8GB memory and the operating system is the 64-bit
version of Windows 7. We consider the slippage configuration in which µ1 = 0.01, µ2 = · · ·= µk = 0 and
equal-variance σ2

i = 0.032 for all systems i = 1,2, . . . ,k.
We firstly compare KN procedure with iKN procedure with the number of systems varying over

k = a×103 where a = 1,2, . . . ,20. We report the averaged CPU Time (measured in milliseconds) over 20
macro-replications. Since we only run 20 macro-replications, we do not report the PCS, which is always
equal to 1 as both procedures select the true best system, system 1, in each macro-replication.
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Figure 1: The average CPU Time for both KN and iKN.

Figure 1 plots the average CPU Time for both KN and iKN procedures with different k’s, from which we
find that the CPU Time for KN increases in a quadratic-like order as the number of systems k increases while
the the CPU Time for iKN tends to be increased in a very flat slope. This is consistent with our theoretical
analysis that the computational complexity of KN is O(k2 logk). Even the computational complexity of
iKN is O(k logk) (which is easier to see for larger values of k in Figure 2 later), Figure 1 shows that the
improvement by iKN is quite significant. For instance, to solve a problem with k = 2× 104, KN needs
about 68 seconds to select the best while iKN returns the result with less than one second (in fact, only
about 0.28 second).

In order to obtain the relationship between the average CPU Time and the number of systems k for iKN,
we test iKN with a larger number of systems varying over k = a×104 where a = 1,2, . . . ,100. Figure 2
shows that the CPU Time for iKN increases linearly with respect to the number of systems. Although the
CPU Time is supposed to increase in the order of O(k logk), due to the fact that k logk increment will be
eventually dominated by k rather than logk as k being large enough, that makes that the plot in Figure 2
looks like a linear increasing slope. It is also worthwhile pointing out that the CPU Time for iKN to solve
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Figure 2: The average CPU Time for iKN.

a problem with k = 106 is about 30 seconds, which is still less than a half of that for KN to solve a problem
with k = 2×104.

As mentioned in Section 2, the computational complexity of sampling and that of comparison operations
are in the same order of O(k logk), which results the computational complexity of iKN is O(k logk). To
see that, we plot the CPU Time for iKN with respect to the total sample size in Figure 3. Figure 3 shows
that the CPU Time for iKN increases linearly with respect to the total sample size. Since the total sample
size increases in the order of O(k logk), an approximately linear relationship reveals that our analysis on
the computational complexity of iKN is indeed O(k logk).

To sum up, we find that the computational complexity of KN is O(k2 logk), which make KN become
inefficient to solve large-scale R&S problems. However, this issue has been gently addressed as in iKN
procedure, whose computational complexity is O(k logk). Preliminary numerical results show the significant
advantage of iKN in solving large-scale problems.

5 CONCLUSIONS AND FUTURE RESEARCH

We studied the computational complexity of comparison operations and sampling of KN procedure, which
become a critical issue when solving large-scale R&S problems with a parallel implementation. This is
mainly caused by the O(k2) pairwise comparison operations in each stage. By modifying the screening
formula, we require only comparisons between a current “best” system with all other inferior systems, which
in return reduces the complexity of comparisons to at most O(k) in each stage. In fact, it is highly possible
that the modified procedure, iKN procedure, conducts no comparison operations during early stages. A
preliminary numerical study shows the advantage of the iKN procedure compared with the original KN
procedure.

We are also working on modifying iKN procedure so that it may be implemented on parallel computing
environment and testing its efficiency with more simulation experiments.
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Figure 3: The average CPU Time v.s. the total sample size for iKN.
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